Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 120

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Multi-aspect characterization of low-temperature tempering behaviors in high-carbon martensite

Zhang, Y.*; Marusawa, Kenji*; Kudo, Kohei*; Morooka, Satoshi; Harjo, S.; Miyamoto, Goro*; Furuhara, Tadashi*

ISIJ International, 64(2), p.245 - 256, 2024/01

Journal Articles

Precise magnetization measurements down to 500 mK using a miniature $$^3$$He cryostat and a closed-cycle $$^3$$He gas handling system installed in a SQUID magnetometer without continuous-cooling functionality

Shimamura, Kazutoshi*; Wajima, Hiroki*; Makino, Hayato*; Abe, Satoshi*; Haga, Yoshinori; Sato, Yoshiaki*; Kawae, Tatsuya*; Yoshida, Yasuo*

Japanese Journal of Applied Physics, 61(5), p.056502_1 - 056502_7, 2022/05

 Times Cited Count:1 Percentile:17.38(Physics, Applied)

Journal Articles

Self-organization of zonal flows and isotropic eddies in toroidal electron temperature gradient driven turbulence

Kawai, Chika*; Idomura, Yasuhiro; Ogawa, Yuichi*; Yamada, Hiroshi*

Physics of Plasmas, 27(8), p.082302_1 - 082302_11, 2020/08

 Times Cited Count:1 Percentile:6.31(Physics, Fluids & Plasmas)

Self-organization in the toroidal electron temperature gradient driven (ETG) turbulence is investigated based on a global gyrokinetic model in a weak magnetic shear configuration. Because of global profile effects, toroidal ETG modes with higher toroidal mode number n are excited at the outer magnetic surfaces, leading to strong linear wave dispersion. The resulting anisotropic wave turbulence boundary and the inverse energy cascade generate the self-organization of zonal flows, which is the unique mechanism in the global gyrokinetic model. The self-organization is confirmed both in the decaying turbulence initialized by random noises and in the toroidal ETG turbulence. It is also shown that the self-organization process generates zonal flows and isotropic eddies depending on a criterion parameter, which is determined by the ion to electron temperature ratio and the turbulence intensity.

Journal Articles

Effects of temperature fluctuation on PIV measurement of natural circulation flow field

Tsuji, Mitsuyo; Aizawa, Kosuke; Kobayashi, Jun; Kurihara, Akikazu; Miyake, Yasuhiro*

Proceedings of 14th International Symposium on Advanced Science and Technology in Experimental Mechanics (14th ISEM'19) (USB Flash Drive), 4 Pages, 2019/11

The particle image velocimetry (PIV) was measured in scaled-model water experiments simulating a natural circulation flow field in a sodium-cooled fast reactor vessel. The temperature fluctuation in the natural circulation flow field causes the distribution of the refractive index. Thus, the temperature fluctuation affects the uncertainty of the velocity in the PIV measurement. In this study, the authors evaluated the effects of the temperature fluctuation on the PIV measurement in the natural circulation flow field.

JAEA Reports

Flow separation at inlet causing transition and intermittency in circular pipe flow

Ogawa, Masuro*

JAEA-Technology 2019-010, 22 Pages, 2019/07

JAEA-Technology-2019-010.pdf:1.5MB

Transition phenomena from laminar to turbulent flow are roughly classified into three categories. Circular pipe flow of the third category is linearly stable against any small disturbance, despite that flow actually transitions and transitional flow exhibits intermittency. These are among major challenges that are yet to be resolved in fluid dynamics. Thus, author proposes hypothesis as follows; "Flow in a circular pipe transitions from laminar flow because of vortices released from separation bubble forming in vicinity of inlet of pipe, and transitional flow becomes intermittent because vortex-shedding is intermittent." Present hypothesis can easily explain why linear stability theory has not been able to predict transition in circular pipe flow, why circular pipe flow actually transitions, why transitional flow actually exhibits intermittency even due to small disturbance, and why numerical analysis has not been able to predict intermittency of transitional flow in circular pipe.

Journal Articles

${it In situ}$ neutron diffraction study of phase stress evolution in a ferrous medium-entropy alloy under low-temperature tensile loading

Bae, J. W.*; Kim, J. G.*; Park, J. M.*; Woo, W.*; Harjo, S.; Kim, H. S.*

Scripta Materialia, 165, p.60 - 63, 2019/05

 Times Cited Count:24 Percentile:79.52(Nanoscience & Nanotechnology)

Journal Articles

Dynamic nuclear self-polarization of III-V semiconductors

Koizumi, Mitsuo; Goto, Jun*; Matsuki, Seishi*

Journal of Semiconductors, 39(8), p.082001_1 - 082001_5, 2018/08

Dynamic nuclear self-polarization (DYNASP) is a phenomenon observed in III-V semiconductors. When electrons of the valence band of a semiconductor are optically excited to the conduction band, a relaxation process of the conduction electrons induces a large nuclear polarization to suddenly occur below a critical temperature. Extending the original theoretical work of Dyakonov et al., we examined the effect of spin distribution of valence electrons excited by the circularly polarized light and the effect of external magnetic field on the phenomenon of the nuclear self-polarization. We found that the nuclear polarization is achieved even above the critical temperatures by the effect of electron polarization and of the external magnetic field. To investigate the phenomenon experimentally, we constructed an apparatus for low-temperature experiments.

Journal Articles

Conceptual design of the iodine-sulfur process flowsheet with more than 50% thermal efficiency for hydrogen production

Kasahara, Seiji; Imai, Yoshiyuki; Suzuki, Koichi*; Iwatsuki, Jin; Terada, Atsuhiko; Yan, X.

Nuclear Engineering and Design, 329, p.213 - 222, 2018/04

 Times Cited Count:21 Percentile:91.03(Nuclear Science & Technology)

A conceptual design of a practical large scale plant of the thermochemical water splitting iodine-sulfur (IS) process flowsheet was carried out as a heat application of JAEA's commercial high temperature gas cooled reactor GTHTR300C plant design. Innovative techniques proposed by JAEA were applied for improvement of hydrogen production thermal efficiency; depressurized flash concentration H$$_{2}$$SO$$_{4}$$ using waste heat from Bunsen reaction, prevention of H$$_{2}$$SO$$_{4}$$ vaporization from a distillation column by introduction of H$$_{2}$$SO$$_{4}$$ solution from a flash bottom, and I$$_{2}$$ condensation heat recovery in an HI distillation column. Hydrogen of about 31,900 Nm$$^{3}$$/h would be produced by 170 MW heat from the GTHTR300C. A thermal efficiency of 50.2% would be achievable with incorporation of the innovative techniques and high performance HI concentration and decomposition components and heat exchangers expected in future R&D.

Journal Articles

Measurement of void fraction distribution in steam-water two-phase flow in a 4$$times$$4 bundle at 2 MPa

Liu, W.; Nagatake, Taku; Shibata, Mitsuhiko; Takase, Kazuyuki; Yoshida, Hiroyuki

Transactions of the American Nuclear Society, 114, p.875 - 878, 2016/06

To contribute to the clarification of the Fukushima Daiichi Accident, JAEA is working on getting instantaneous void fraction distribution data in steam water two - phase flow in rod bundle geometry under high pressure, high temperature condition, with using Wire Mesh Sensor (WMS) developed at JAEA for high pressure, high temperature condition, focusing on the low flow rate condition after the reactor scram. This paper reports the experimental results for the measured void fraction distribution in steam vapor two-phase flow in a 4 $$times$$ 4 bundle under 1.6 MPa (202 $$^{circ}$$C), 2.1 MPa (215 $$^{circ}$$C) and 2.6 MPa (226 $$^{circ}$$C) conditions. The data is expected to be used in the validation of the detailed two-phase flow codes TPFIT and ACE3D developed at JAEA. The time and space averaged void fraction data is also expected being used in the validation of the drift flux models implemented in the two fluids codes, such as TRACE code.

JAEA Reports

Application of FORNAX-A

Aihara, Jun; Ueta, Shohei; Nishihara, Tetsuo

JAEA-Technology 2015-040, 32 Pages, 2016/02

JAEA-Technology-2015-040.pdf:0.83MB

Original FORNAX-A is a calculation code for amount of fission product (FP) released from fuel rods of pin-in-type high temperature gas-cooled reactors (HTGRs). This report is for explanation what calculations become possible with minor changed FORNAX-A.

Journal Articles

Prediction of heater surface temperature change at subcooled flow boiling DNB

Liu, W.; Podowski, M. Z.*

Nihon Kikai Gakkai Netsu Kogaku Konfarensu 2015 Koen Rombunshu (CD-ROM), 2 Pages, 2015/10

This paper gives prediction to the transient heat transfer at Departure of Nucleate Boiling (DNB) point for subcooled flow boiling. The prediction is carried out by solving the heat conduction equations in cylindrical coordinates with convective boundary condition, which changes with the change of the heat transfer mode on the heated surface. DNB is assumed to happen at the complete dryout of liquid sublayer trapped between the heated wall and an elongated vapor clot, during the passing time of the vapor clot. Important parameters including initial thickness of the liquid sublayer, vapor clot length, vapor clot velocity and void fraction etc., are calculated from the Liu - Nariai model. The initial heater surface temperature is derived from the Jens-Lottes correlation. The transient changes of liquid sublayer thickness, surface temperature at DNB are reported. No obvious temperature jumping is observed at DNB. To predict temperate excursion at Critical Heat Flux (CHF), more simulations to the transient boiling and film boiling processes are needed.

Journal Articles

Global profile effects and structure formations in toroidal electron temperature gradient driven turbulence

Idomura, Yasuhiro; Tokuda, Shinji; Kishimoto, Yasuaki

Nuclear Fusion, 45(12), p.1571 - 1581, 2005/12

 Times Cited Count:38 Percentile:74.93(Physics, Fluids & Plasmas)

Using a global gyrokinetic toroidal particle code, the toroidal electron temperature gradient driven (ETG) turbulence is studied in positive and reversed shear tokamaks. In the nolinear turbulent state, the ETG turbulence in the positive and reversed shear configurations show quite different structure formations. In the positive shear configuration, the ETG turbulence is dominated by streamers which have a ballooning type structure, and the electron temperature $$T_e$$ profile is quickly relaxed to the marginally stable state in a turbulent time scale. In the reversed shear configuration, quasi-steady zonal flows are produced in the regative shear region, while the positive shear region is characterized by streamers. Accordingly, the electron thermal diffusivity $$chi_e$$ has a gap structure across the $$q_{min}$$ surface, and the $$T_e$$ gradinet is sustained above the marginal value for a long time in the quasi-steady phase. The results suggest a stiffness of the $$T_e$$ profile in positive shear tokamaks, and a possibility of the Te transport barrier in reversed shear tokamaks.

Journal Articles

Probe measurements; Fundamentals to advanced applications

Amemiya, Hiroshi*; Wada, Motoi*; Toyoda, Hirotaka*; Nakamura, Keiji*; Ando, Akira*; Uehara, Kazuya; Oyama, Koichiro*; Sakai, Osamu*; Tachibana, Kunihide*

Purazuma, Kaku Yugo Gakkai-Shi, 81(7), p.482 - 525, 2005/07

This article is asked to write by the Japan Society of Plasma Science and Nuclear Fusion Research. The probe diagnostics in fusion plasma is explaind for many readers of the Journal of Plasma and Fusion Research, who have much concerned on various aspects.In section one, the method to estimate the electron temperature and the density as well as the electron energy distribution function with the single probe is given. In section two, the method to estimate the ion temperature and the flow velocity with the double probe is given. The practical measurements are explained introducing the data obtained at JFT-2, JFT-2a and JFT-2M in JAERI tokamak.

Journal Articles

First principles based simulations of instabilities and turbulence

Villard, L.*; Angelino, P.*; Bottino, A.*; Allfrey, S. J.*; Hatzky, R.*; Idomura, Yasuhiro; Sauter, O.*; Tran, T. M.*

Plasma Physics and Controlled Fusion, 46(12B), p.B51 - B62, 2004/12

 Times Cited Count:29 Percentile:67.01(Physics, Fluids & Plasmas)

This paper reviews the present status of recent first principles based plasma turbulence simulations, and gives quantitative discussions on influences of the v// nonlinearlity and the geometry effects in the gyrokinetic Poisson equaiton, which are ignored in the conventional approximations, on simulations results. Careful treatments of these effects enable turbulence simulations satisfying the conservation of the energy and the particle number. The new simulation disclosed new phenomena, and it is found that (1) turbulence spreading is induced by avalanche like phnemena consisting of bursty heat transport and local flattening of pressure profiles, and (2) nonlinearly driven E$$times$$B flows become global shear flows with scale lengths of about 30 ion gyro radii.

Journal Articles

Study of drift wave-zonal mode system based on global electromagnetic landau-fluid ITG simulation in toroidal plasmas

Miyato, Naoaki; Li, J. Q.*; Kishimoto, Yasuaki

IAEA-CN-116/TH/8-5Rb (CD-ROM), 8 Pages, 2004/11

Using a global Landau fluid code in toroidal geometry, an electromagnetic ion temperature gradient (ITG) driven turbulence-zonal mode system is investigated. Two different types of zonal flows, i.e. stationary zonal flows in a low $$q$$ (safety factor) region and oscillatory ones in a high $$q$$ region which are called geodesic acoustic modes (GAM), are found to be simultaneously excited in a torus. The stationary flows efficiently suppress turbulent transport, while the oscillatory ones weakly affect the turbulence due to their time varying nature. Therefore in the low $$q$$ region where the zonal flows are stationary, the zonal flows are dominant over the turbulence. On the other hand, the turbulence is still active in the high $$q$$ region where the zonal flows are oscillatory.

Journal Articles

Measurement of temperature effect on low enrichment STACY heterogeneous core

Watanabe, Shoichi; Yamamoto, Toshihiro; Miyoshi, Yoshinori

Transactions of the American Nuclear Society, 91, p.431 - 432, 2004/11

Temperature effect is a main factor which affects the transient characteristics at a criticality accident. A series of reactivity effects due to changes in fuel temperatures were measured for two kinds of STACY heterogeneous lattice configurations. The core was composed of LWR-type fuel rod array and low-enriched uranyl-nitrate-solution concerning the dissolver of the reprocessing facility for LWR spent fuel. The critical solution heights at various solution temperatures were measured. From the change of the critical water height with fuel temperature, the reactivity effect was evaluated by a critical-solution-level worth method. The temperature effect was also calculated by using SRAC and the transport calculation code TWODANT. The experimental value was estimated to be -2.0 cent/$$^{circ}$$C for the case "2.1cm-pitch", and -2.5 cent/$$^{circ}$$C for the case "1.5cm-pitch". The calculated results gave agreement with the experiments within $$sim$$10%.

Journal Articles

Experience of HTTR construction and operation; Unexpected incidents

Fujimoto, Nozomu; Tachibana, Yukio; Saikusa, Akio*; Shinozaki, Masayuki; Isozaki, Minoru; Iyoku, Tatsuo

Nuclear Engineering and Design, 233(1-3), p.273 - 281, 2004/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

From a viewpoint of heat leakage, there were two incidents during HTTR power-rise-tests. One was a temperature rise of the primary upper shielding, and the other was a temperature rise of the core support plate. Causes of the both incidents were small amount of helium flow in structures. For the temperature rise of the primary upper shielding, countermeasures to reduce the small amount of helium flow, enhancement of heat release and installation of thermal insulator were taken. For the temperature rise of the core support plate, temperature evaluations were carried out again considering the small amount of helium flow and design temperature of the core support plate was revised. By these countermeasures, the both temperatures were kept below their limits.

Journal Articles

Effects of irradiation and water temperatures on IASCC susceptibility of stainless steels

Miwa, Yukio; Tsukada, Takashi

Proceedings of 8th Japan-China Symposium on Materials for Advanced Energy Systems and Fission & Fusion Engineering, p.161 - 168, 2004/10

Irradiation assisted stress corrosion cracking (IASCC) is one of the environmental degradation problems of in-core structural materials for light water reactors. The effects of irradiation and water temperatures on the IASCC were studied using type 316(LN) stainless steels irradiated at 333-673 K to 1.1-16 dpa. IASCC did not occur at 513 K in oxygenated water for specimens irradiated below 573 K to 1.1-16 dpa, but IASCC occurred above 533 K in oxygenated water for all specimens. The irradiation temperature had a strong influence on IASCC susceptibility at 513 K in oxygenated water, so that the irradiation temperature dependence was compared with the temperature dependence of other radiation-induced phenomena.

Journal Articles

Effects of silicon, carbon and molybdenum additions on IASCC of neutron irradiated austenitic stainless steels

Nakano, Junichi; Miwa, Yukio; Koya, Toshio; Tsukada, Takashi

Journal of Nuclear Materials, 329-333(Part1), p.643 - 647, 2004/08

 Times Cited Count:9 Percentile:48.81(Materials Science, Multidisciplinary)

To study effects of minor elements on the irradiation assisted stress corrosion cracking (IASCC), high purity Type 304 and 316 stainless steels (SSs) were fabricated and added minor elements, Si or C. After neutron irradiation to 3.5$$times$$10$$^{25}$$n/m$$^{2}$$ (E$$>$$1MeV), the slow strain rate tests (SSRT) for the irradiated specimens was conducted in oxygeneted high purity water at 561 K. Fracture surface of the specimens was examined using the scanning electron microscope (SEM) after the SSRT. Fraction of intergranular stress corrosion cracking (IGSCC) on the fracture surface after the SSRT increased with netron fluence. Suppression of irradiation hardening and increase of peiod to SCC fracture as benefitical effects of the additional elements, Si or Mo, were not observed obviously. In high purity SS added C, fraction of IGSCC was the smallest in the all SSs, although irraidiation hardening level was the largest in the all SSs. Addition of C suppressed the susceptibility to IGSCC.

JAEA Reports

Development of facility for in-situ observation during slow strain rate test for irradiated materials

Nakano, Junichi; Tsukada, Takashi; Tsuji, Hirokazu; Terakado, Shogo; Koya, Toshio; Endo, Shinya

JAERI-Tech 2003-092, 54 Pages, 2004/01

JAERI-Tech-2003-092.pdf:14.05MB

Irradiation assisted stress corrosion cracking (IASCC) is a degradation phenomenon caused by synergy of neutron radiation, aqueous environment and stress on in-core materials, and it is an important issue in accordance with increase of aged light water reactors. Isolating crack initiation stage from crack growth stage is very useful for the evaluation of the IASCC behavior. Hence facility for in-situ observation during slow strain rate test (SSRT) for irradiated material was developed. As performance demonstrations of the facility, tensile test with in-situ observation and SSRT without observation were carried out using unirradiated type 304 stainless steel in 561 K water at 9 MPa. The following were confirmed from the results. (1) Handling, observation and recording of specimen can be operated using manipulators in the hot cell. (2) In-situ observation can be performed in pressurized high temperature water and flat sheet type specimen is suitable for the in-situ observation. (3) Test condition can be kept constantly and data can be obtained automatically for long test period.

120 (Records 1-20 displayed on this page)